Physics 1240: Sound and Music

<u>**Today (7/22/19)</u>**: Fourier Synthesis, Sound Envelopes ***HW 2 due at the front of class, Homelab 2 due Wednesday*</u>

Next time: Midterm Exam

Today's Agenda

- Announcements, Review (11:00-11:10)
- Discuss Fourier Synthesis/Sound Envelopes (11:10-11:50)
- Tutorial 6: review for midterm (11:50-12:20)
- Wine glass demo (12:20-12:35)

<u>Review</u>

- <u>Harmonic series</u>: *f*, 2*f*, 3*f*, 4*f*, 5*f*, 6*f*, ...
- <u>Tuning system</u>: assigning a frequency to each note in a scale
- <u>Temperament</u>: tuning system that slightly compromises ("tempers") pure, harmonic intervals

<u>Review</u>

- Just Tuning: uses only pure, harmonic intervals
 - Pros: all pure consonances for intervals from same note
 - Cons: can only play in one key
- <u>Pythagorean Tuning</u>: makes all fifths in any key pure (3/2)
 - Pros: all pure consonances for fifths
 - Cons: thirds are dissonant; Pythagorean comma
- Equal Temperament: same interval for all adjacent notes
 - Pros: can play in any key
 - Cons: all intervals are very slightly dissonant

	Note name:	С	D	E	F	G	Α	В	С
Just	Frequency ratio to C:	$\frac{1}{1}$	$\frac{9}{8}$	$\frac{5}{4}$	$\frac{4}{3}$	$\frac{3}{2}$	$\frac{5}{3}$	$\frac{15}{8}$	$\frac{2}{1}$
Pythagorean		$\frac{1}{1}$	$\frac{9}{8}$	$\frac{81}{64}$	$\frac{4}{3}$	$\frac{3}{2}$	$\frac{27}{16}$	$\frac{243}{128}$	2.03? 1
Equal- Tempered		$\frac{1}{1}$	$\left(\frac{1}{2^{12}}\right)^2$	$(\frac{1}{2^{12}})^4$	$(\frac{1}{2^{12}})^5$	$\left(\frac{1}{2^{12}}\right)^7$	$(\frac{1}{2^{12}})^9$	$\left(\frac{1}{2^{12}}\right)^{11}$	$\frac{2}{1}$

<u>Review</u>

- Musical systems can have an arbitrary number of notes within one octave. Must balance:
 - Minimizing dissonance (more notes means more beats)
 - Increasing complexity (fewer notes means less interesting)
- Pentatonic (e.g. minor blues scale, Javanese gamelan)
- Microtonal

Fourier's Theorem: every **periodic** sound can be written as the sum of sine waves with integer multiples of frequency

Noise: waveforms have no periodicity, inharmonic spectrum

800

1000

Tones: periodic waveforms, harmonic spectrum

Ways to represent sound

Types of Noise

- White: flat spectrum; cymbals/snare/"sh", acoustics EQ test
- Pink: equal energy per octave, testing speakers, background
- Violet: acoustic thermal noise of water
- Brownian: random walk •

500

Types of Noise (ctd.)

• Grey: equal loudness at all frequencies

Clicker Question 10.1

How many of the following will produce random noise?

- A drummer playing at a steady 80 bpm (beats per minute)
- A toddler banging all the notes on a piano and screaming
- A phone's dialing sound
- A waterfall
- A) 0
 B) 1
 C) 2
 D) 3
 E) 4

Clicker Question 10.1

How many of the following will produce random noise?

- A drummer playing at a steady 80 bpm (beats per minute)
- A toddler banging all the notes on a piano and screaming
- A phone's dialing sound
- A waterfall
- A) 0B) 1Drummer and waterfall(piano and voice produce harmonic)
 - frequencies, no matter how cacophonous!) (dialing sound: two pure tones)

A) 0
B) 1
C) <u>2</u>
D) 3
E) 4

BA

Clicker Question 10.2

What could the sound plotted below represent?

- A) Violin playing a bowed note
- B) Hitting a snare drum once
- C) A plucked guitar string
- D) Female voice singing
- E) Fingernails scraping on a chalkboard

Clicker Question 10.2

ΒA

What could the sound plotted below represent?

- A) Violin playing a bowed note
- B) Hitting a snare drum once
- C) A plucked guitar string
- D) Female voice singing
- E) <u>Fingernails scraping on a</u> <u>chalkboard</u>

- Goal: recreate any periodic sound by combining harmonics with set amplitudes ("additive synthesis")
- <u>Spectrum</u>: list of relative amplitudes of harmonics present in a sound
- Simplest examples:

- Instruments: usually have harmonics and noise components
- Timbre can change on the same instrument playing different pitches or volumes

https://www.youtube.com/ watch?v=VRAXK4QKJ1Q

- Need more than a spectrum to reproduce instrument sounds
 - e.g. middles of piano, cello, trumpet, triangle wave

- <u>Sound envelope</u>: graph of a sound's amplitude over the duration of a note
- <u>ADSR</u>:
 - Attack
 - Decay
 - Sustain
 - Release

